Taking four papers numbered 1-4 as an example, the procedure for calculating each of their PRA scores is as follows:

(1) Each paper is treated as a node on the citation graph. A directional edge between two papers is established when one cites another (see Figure 7). For example, paper 1 cites papers 2, 3, and 4, so the arrows are facing away from paper 1 to the other three.
(2) Suppose that all nodes have equal weights. This means that the probability of paper 1 citing papers 2, 3 and 4 is the same, namely $\frac{1}{3}$; the probability of paper 4 citing papers 1 or 3 is the same, namely $\frac{1}{2}$; and so on (see Figure 8).

(3) These probabilities form a transition matrix A, where each entry (i, j) represents the probability of documents in the i columns citing documents in the j rows (see Figure 9).
(4) Then we have to find the stationary state r, which is the PageRank scores for each publication.

To obtain this we have to solve a linear equation:

$$ r = \frac{1 - d}{N} I + d Ar, $$

where N is a number of nodes, $d \in (0,1)$ is a damping factor1, and I is a matrix of ones.

1 The damping factor in this study was set at 0.15, the same as used by Page et al. (1998).